Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches.more » « less
-
Abstract The Poynting vector (Poynting flux) from Earth's magnetosphere downward toward its ionosphere carries the energy that powers the Joule heating in the ionosphere and thermosphere. The Joule heating controls fundamental ionospheric properties affecting the entire magnetosphere‐ionosphere‐thermosphere system, so it is necessary to understand when and where the Poynting flux is significant. Taking advantage of new data sets generated from DMSP (Defense Meteorological Satellite Program) observations, we investigate the Poynting flux distribution within and around the auroral zone, where most magnetosphere‐ionosphere (M‐I) dynamics and thus Joule heating occurs. We find that the Poynting flux, which is generally larger under more active conditions, is concentrated in the sunlit cusp and near the interface between Region 1 and 2 currents. The former concentration suggests voltage generators drive the cusp dynamics. The latter concentration shows asymmetries with respect to the interface between the Region 1 and 2 currents. We show that these reflect the controlling impact of subauroral polarization streams and dawnside auroral polarization streams on the Poynting flux.more » « less
An official website of the United States government
